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Abstract. The Hamiltonian with magnetic impurities coupled to the strongly correlated electron
system is constructed from theJ model. It is diagonalized exactly by using the Bethe ansatz
method. Our boundary matrices depend on the spins of the electrons. The Kondo problem in
this system is discussed in detail. The integral equations are derived with complex rapidities
which describe the bound states in the system. The finite-size corrections for the ground-state
energies are obtained.

1. Introduction

The Kondo problem, devoted to studying the effects due to the exchange interaction between
the impurity spin and electron gas, has played an important role in condensed matter
physics since its discovery [1]. In the original treatments of the Kondo problem, the
electron—electron interaction is discarded. This is reasonable in three dimensions where the
interacting electron system can be described by a Fermi liquid. Recently, much attention
has been paid to the theory of the magnetic impurities in the Fermi liquid and Luttinger
liquid [2, 3] where the impurities are coupled to strongly correlated electron system. Apart
from the fundamental theoretical interests, it is remarkable that the physics implied here
can be accessible experimentally. The recent advances in semiconductor technology enable
us to fabricate very narrow quantum wire which can be considered to be one dimensional
(1D) and furnishes a real system of Luttinger liquid. Also, edge states in a two-dimensional
(2D) electron gas for fractional quantum Hall effects can be considered as a Luttinger
liquid [4]. Intense efforts and much progress has been made around the subjects from
different approaches. Using bosonization and renormalization techniques, Kane and Fisher
[5] studied transport of a 1D interacting electron due to potential barriers. Their results
triggered the study of the problem of local perturbations to a Luttinger liquid and Kondo
problem in a Luttinger liquid. The Kondo problem in a Luttinger liquid was considered by
Lee and Toner [6]. They also performed the renormalization group calculation and found the
crossover of the Kondo temperature from a power law dependence on the Kondo coupling
constant to an exponential one. Relying on the poor man’s scaling method, Furusaki and
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Nagaosa [7] showed that the Kondo coupling flows to the strong-coupling regime not only
for the antiferromagnetic case but also for the ferromagnetic case. The boundary conformal
field theory [8] allows a classification of critical behaviour for a Luttinger liquid coupled

to a magnetic impurity. It turns out that there are two possibilities, a local Fermi liquid
with standard low-temperature thermodynamics or a non-Fermi liquid [7]. The non-Fermi
liquid behaviour is induced by the tunnelling effect of conduction electrons through the
impurity which depends only on the bulk properties, not on the details of the impurity [9].
Density matrix renormalization group calculation also supports the same conclusion [10].
In addition, the renormalization group flow diagram for parameters characterizing impurity
is more complex and contains fixed points responsible for the low-temperature behaviours
when the potential of impurity is not strong [11].

Despite all important progress hitherto made, the problem of few impurities embedded
in a strongly correlated 1D electron system is still far from a complete understanding. We
think that exact solutions of some integrable models on the subjects are useful from which
one can expect to draw definite conclusions. IndeeduB#d et al [12] has thoroughly
solved an integrable model with impurity coupled with the' chain. They introduced the
impurity through local vertices as in [13]. The model introduced has a lack of backward
scattering and the presence of redundant terms in the Hamiltonian. Based on Kane and
Fisher's observation [5], we see that it is advantageous to use an open boundary problem
with the impurities at open ends to study the problem of impurities coupled with strongly
correlated electron systems. The programme has been initiated sfamntaracting Fermi
system in [14] for the—J model in [15] and for the Hubbard model in [16].

The t—J model, is considered to be one of the most fundamental models in
strongly correlated electron systems because of its possible relevance for purely electronic
mechanisms for higlz superconductivity and heavy-fermion systems. This model is
obtained from the Hubbard model as an effective Hamiltonian for the low-energy states
in the strong-correlation limit. In this limit double occupancy of fermions is forbidden,
leading to only three possible states at each lattice site for half spin. Currently, there is a
greater demand for its study. Very recently, the Luttinger liquid properties afthenodel
were discussed in [17]. By solving the functional relations, the finite-size corrections related
to ther—J model were dealt with for the open boundary conditions in [18]. The effects of
an integrable impurity coupling to both spin and charge degrees of freedom are studied in
a periodicr—J chain [12] which we have mentioned above. Another generalization of the
t—J model is given in [19] where they used the one-parametric family of four-dimensional
representations gf/ (2|1). Itis also a kind of generalization of the extended Hubbard model
[20].

In this paper we expand the study of the Kondo problem in the-ADmodel [15] by
an exact solution of open boundary Bethe ansatz. For this purpose we put two magnetic
impurities in both sides of the opemJ model which is a typical situation for the 1D
systems with impurities. The coupling constants of the impurities with conduction electrons
cover from negative infinity to positive infinity, which means that both the ferromagnetic
Kondo effect and antiferromagnetic Kondo effect can be dealt with on the same setting.
We then construct the Hamiltonian for the system with magnetic impurities from-the
model. The integrability of this model ensures that both the Yang—Baxter equation and the
reflecting Yang—Baxter equation are satisfied. By using the algebraic Bethe ansatz scheme
for open boundary [21] we diagonalize the Hamiltonian for the present system and obtain the
Bethe ansatz equations. From which we derive the nonlinear integral equations governing
the thermodynamic properties of the model for large system. The finite-size corrections for
energy of ground states in all cases can be calculated.
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This paper is organized as follows. In section 2 the constructed Hamiltonian and its first
guantization form are given explicitly. In section 3 the boundary matrix depending on the
rapidity and spin of the particle is given and all possible integrable cases for the model are
exhausted. The Bethe ansatz equations of the systems for all integrable cases are derived
in section 4. The properties of the ground state for the cases other than that in [15] are
discussed in great detail in section 5. In the final section the finite-size corrections of the
ground-state energies for particular cases are obtained.

2. The Hamiltonian of the model

Consider a 1D lattice witl; sites, N electrons and two magnetic impurities at both ends.
Due to a large on-site Coulomb repulsion there is at most one particle at each site. The
dynamics of the system are governed by a Hamiltonian which we construct from-the
model [22-27]. The conduction electrons can hop letween the neighbouring sites.
There are four types interactions in the model. A spin exchange interattiom a charge
interaction independent of the spin of strengtivetween the neighbour conduction electron;
Kondo couplingJ,, J, and impurity potential interactiong,, V,, between the electron and
impurities. The Hamiltonian of the system has the form:
G-1 G-1
H=—1Y Y (ChCii1s +Ci1,Cia) + 7 > 8+ Sia
j=lo=t{ j=1
G-1
+V njnjy1 + Jasl * Sa + Vanl + JbSG : Sb + VbnG (1)
j=1

WhereCJf,(ng) is the creation (annihilation) operator of the conduction electron with spin
o on the sitej; J,,, V,, are the Kondo coupling constants and the impurity potentials,
respectively;S; = %Zw, Cj?;ag,(,/Cj(,/ is the spin operator of the conduction electron;,
nj = C}LCjy + C;,C;, is the number operator of the conduction electr6nis the length
(or site number) of the system. Some properties of the ground statefod, J = 2,
V = % were reported in [15]. Following Schultz's notation [28] we write the translation
operatorsT’;*:

Y}i\ll(xl,...,xj,...,xzv):\Il(xl,...,szl:l,...,xN)

where W(xy, ..., xj,...,xy) is the wavefunction ofN conduction electrons. In first
guantization and in appropriate energy units=( 1) the Hamiltonian of this system can
be written as

N N
H=-=Y (T +T7)+ Y (Kojby1+ Kby 6 + K)) @)
j=1 j=1
where the couplings are denoted by operatéis = V, — ’74“ + %Paj and K;; =

Vi — % + %P,,j with the permutation operator®, ; between the spins of the conduction
electronj and the impurities: (b). The operatoX; acts on the wavefunctioy as

N
Kilp(-xl’ X2y e vns .XN) = Z ij‘,x,'-l-lKij\IJ(xlv X2, .y xN)
i=1
whereK;; = V — ﬁ + %P,-j describes the interactions between the conduction electrons
with the permutation operataP;; permutingith and jth electrons in spin space. We will
diagonalize the above Hamiltonian in the following section.
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3. Integrability conditions

We write the wavefunction in region€Q xp1 < xg2 < -+ <xgyv < L—1as
‘1101,0'2,...,0“/\/ (xla X2, 00y xN) - Z Z EPgerQl,aQZ ..... ooN
P

r1,72,... ry=%1

N
(rpoikpo1, rpo2kpo2, ..., rponkpon) exlo[i Zerkijj:| (3)
=1
where the coefficients Ao, op,.....00n ("P1kP Q1. TPO2KkP Q2. . ... TPONkPoN) are also

dependent on the spins of magnetic impurities which are suppressed for brevity and
(—1), when the parity ofP is even (odd)g, = ]_[j].V:lr in which r takes the value-1 or
—1. The boundaryR-matrix satisfies the reflecting Yang—Baxter equation:

1 2 2 1
S12(A, ) R (A)S12(A, =) R (1) =R (W) S12(A, =) R (A)S12(A, ) (4)
2
where operatorsle (A) and R (u) are defined as

Ry =RG)®idy, R0 =idy, ® R
for matrix R € End(V). The S-matrix satisfies the normal factorizable condition:

S12(k, 1) S13(k, 1) S23(A, ) = Sa3(A, ) S13(k, ) S12(k, 1). (5)
For convenience we set= 1. From the reflecting Yang—Baxter equation and the form for
S-matrix, the boundaryR-matrix should have the form
q—iC—iP
g +iC+iP
whereP is the permutation operatay,= +1 cot, =3 tan andC is the arbitrary constant.
Putting K,),; = m + [P, we have from equation (4) that

R = expip) (6)

g[(m — 1) — 1] tar? g +2(g*+C?-1) tang +q[m+1)? -1 =0. (7)

This is the restriction imposed on coupling constants for our model (1) to be integrable.
The details are as follows.

J =2,V = —1 in this case we know that the scattering matrix in the bulk can be
written as:
1 k 1 k; P
scotxt — scotz2 —iP
S1alky, ko) = 25 Zkl 2 2k2 22 (8)
50017 — ECOtE —1

where Py, is the permutation operator between two electrons. The bounglanatrix at

the left end of the chain takes the form:

1 ki . .

. scot% —1C, — 1 Py;

Ry (kj, o) = explig, (k;)] 2—F———.
zCot3 +1C, + 1Py

The coupling constants,, V, at the left end of the chain are expressed in termé& of

)

;o 8 Vo 3—4c? (10)
‘T (2C, F1H(2C, +3) T 2C, FDC, £3)
and
ki o DN _ "
exp[i% (kj)] _ Ja(cot + 2iC,) explik;) + i[4 + (4V, — J,) expik;))] (1)

Ju(coty — 2iC,) exp(—ik;) — i[4 + (4V, — J,) exp(—ik;)]
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The boundaryR-matrix at the right end of the chain has the form:

3 cot —iCp — 1 Py;
Ry (—kj, ;) = exp[—2ik; (G + 1) + gy (k; )]
, +iCy, + le,

(12)

Similar relations exist fot/,, V, andg,(k;) by merely substituting indices into (10) and
(11) by b.

31.J=-2V=3

The boundaryR-matrices have the forms:

ltank L 4+10C, + 1Py

R, (k;, o) = explig, (k; >] 2 _ _ (13)
7 —1C, — 1Py
1y C,+iP
Ry(—kj, 0j) = exp[=2ik;(G + 1) +ig, (k)] £ 2 an - +1C + 1Py (14)

Zt ——ICb Iij

where ¢, (k;) and ¢, (k;) are the same as in the proceeding. Now the coupling constants
should be written in terms of the arbitrary parametgrin the form

8 V- 4c? -3
(2C, T D(2C, + 3) T RCFHRCEY

(15)

a =

J», V, have the same expressions except with the substitution of indicéy b.
Correspondingly, the scattering matixin the bulk for two conduction electrons is

ITtan’ — Ltank +ipy,

S1a(k1, ko) = = (16)
tan— -3 tan +i
32.7=2V=3
In this case the dependence of coupling constants on parafetakes the form
8 4c? -7
Ja = — ‘/a = S . (17)

(2C. FD(2C, £3) (2C. ¥ D(2C. £3)

Jy, Vi, have the same expressions by the substituting of indicey b. The scattering
matrix in the bulk is

Sualh. k) — ftan¥ — Itank —ipy, (18)
1 Rl ltanks — —tan"2 +i
The boundaryR-matrices are
k: . .

. L tanz —1Cy — 1P,
Ra(kj. 07) = expliga (k)] 2—2———— (19)

t ng +1C, + 1P,

5 ta — —iC, — Iij

Ry(—k;j, 07) = exp[-2ik;(G + 1) + ipp(k; )] (20)

+|Cb+|ij.
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33.7=-2V=-3
The coupling constants have the forms
8 7 —4C?
J, = V, = )
(2C, F D(2C, £3) (2C, FH(2C, £ 3)

Jy, V, have the same expressions by the substituting of indidssb. The scattering matrix
in the bulk is

(21)

1 k 1
scot? — 5 co —2-|-|P12
S1alky, ko) = —2 ic 2 - 2 o 2 ; (22)
3 cot’y — jcot’s —
The boundaryR-matrices are
—cot L+ iC, + 1Py,
Rq(kj, o)) = explig, (k)] 2—F———— (23)
5 coti’ —1C, — 1P
5 cot L +iCp + 1P,
Ry(—k;. 07) = exp[-2ik; (G + 1) + iy (k; )] 2 k. (24)

— — ICI7 — IP;,}

The expressions for boundary matrices depending on both the moment of the particle and
the spin of the electron are new. The expressions ofStheatrix in the bulk have already
been obtained in [22], but they are different from ours.

4. Bethe ansatz equations

By using the standard Bethe ansatz procedure, we can diagonalize the Hamiltonian (1) [21]

and obtain the following Bethe ansatz equations. Wliea 2 andV = —%, setting
1 k; 1 k H
scotZ — scot2 —ip;
Siolky ko) = 2228 & (25)
scot3 — Zcot? —i
1 1 kni1 i
1coth — 5 COt=5L — Py
Sin+1lkj, k1) = 22 - (26)

1 ki 1 kN+1 s
5 cot= > COt |

where col"—zO = 2iC,, cot’% = 2iCy, Pjo = P,j, Pin4+1 = P,j, We can write the boundary
R-matrices as the forms:

Ot C —i So( P ko)
R, (kj, o) = ex |a(k)2 ! 27
! Pl ]—cot L +iC, +i Sjo(—k;, ko) @
—cot——|C —i S :
Ry(—k;, 0)) = exp[-2ik; (G + 1) + igy (k; )]2 o1 Siweally, Kni1)

. 28
+iCy + i Sivra(—kj, kny1) (28)

Define
T(A) = S;j(M)Seo(M)Sea(R) ... Srja(M) Srjpa(R) ... Sen (W) Seva(B)  (29)
with
A—icoth —ipy,

S0 = - [=0,1,...,.N+1 30
1) A—%Cot%—l (30)
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We obtain the equation

2i — cot% %cot% +iC, +i %cotk—zf +iC, +i

i—cot'% %cot% —ic, —i %cot% —ic, —i

x expl—ig. (k;) —ipp(k;) + 2ik; (G + D] P (32)

where® is the eigenstate of the system. Then the Bethe ansatz equations can be expressed
as

T[T )T (=M]) L ® =

—lcoth
a=1cot

. ) —cot - +iC, +i 5 cot'ﬁ+iCb+i
expl2i; (G + 1) — igu (k) — iy (k)] 2 RV
2c ——|C — —COt%—ICb—I
M 1
=1_[§ cotld — g +§—cot L+ Ap +2
Teothd — s — 5 Tcothd + g
(Ao + 5%+ C2 (hq +2)2+621ﬁ[/\ —-cot"'+—/\ +1cotd + ]

(e — 52+ CZ (hg — 52+ fcotd — I, + 2cotd — 1

G=212...,N) (32)

)»a—)ulg-i-l)ua-i-)»ﬂ-i-l
Ag —Ag—iAg+2rg—i

a=12,....,M). (33)
B=1(B#x)

M is the number of down spins ad is the number of electrons. The functipris denoted
by expression (11). Similarly, whei = —2 andV = % we can write down the Bethe

ansatz equations as the forms:

_ _ ;tan——iC —'ltan'%—icb—i
exp[2k; (G + 1) —iga(k;) — ipy(k;)] 1 Tk :
tan L +iC, +1 3 stang +1C, +1

t —lzltanf+x,3

tan¥ —ig + 5 1tan’d +Aﬁ+2
(ha +5)°+C2 (ha + 5)* + CF )La—%tan%-l--)h +itank + 5
(he = 52+ C2 (ke — 52+ CZ 11 ho — 3tan — S 2, + Ltan¥ — §

G=212...,N) (34)

u . .
Ag —Ag+iAg+Ap+i

= 1_[ )\a Aﬂ+'ka+kﬂ+- (a:l,z,...,M)‘ (35)
ﬂ:]_(ﬂ;&a) a — /3 —1 a+ ﬂ —1

WhenJ =2 andV = 3, we have that

1 1 ;
. . tan L L iC, +1i tan’+|Cb+|
expl2ik; (G + 1) — iga (k;) — igp (k)] 2 -2 :

a7—|Ca— Etani—le—l

N 1tan——1tan’ﬂ+i Itan¥ + ltank +i
< ] 4

1102 stan% — Ltank —iltan¥ 4 ltank —i
M 1 kj 1
= tan —)\.ﬂ+ tan +)\.ﬂ—|— .
zni k2 .21 3 2 (j=12,...,N) (36)
a1 stan o, — 1 Jtan® 45 —
(o + 52+ C2 (A + 5%+ C2 X 2 1tan’ﬂ+-x + Stan + 5
(ha — 52+ C2(ha — 52+ CZ |1 ho — Stank — S 2, + Stank — &
M .
Ay — Ag 1 hy + hp +i
- prlte il @=12....M). 37)

ﬂ:]_(ﬂ#a))‘a_)‘ﬂ_l)‘a +)»/3—|
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WhenJ = —2 andV = —3, we obtain that

. . iCOt iCa—i%COI%—iCb—i
exp[2ik; (G + 1) —ip,(k;) — igp(k; )] ; Y P .
—+|C +izcots +iC, + 1

ﬁ 1cot'ﬂ—lcot —|—cot’ + Lcotd —i

7é)zcot———cot"’-|-|—c0tf + Lcoth +i

M 1 kj i
5C0t4 —Ag — 5 cot -+ A
Zl—[i 2 B2 L (j=12...,N) (38)
12

cotd — s+ 1 Lcoth +Aﬂ+2

(e + 52+ C2 (Ao + D2+ CE Y Ka—icot%-l-—)» +icoth 4§
(ha — 52+ C2(ha — 52+ CZ |1 ho — 3Ot — S 2, + cotl — &
M Ay —hpFihg +Ap+i

= J] TP e a— (=12 ..., M). (39)
p=i(psta Mo ~ A TN Ao T g =

Here the functionp, (k;, is expressed by equation (11) apglk;) has the same expression

as relation (11) with the substitution of indexoy b. M is the number of down spins and

is the number of the electrons. It should be noted that in the above Bethe ansatz equations
we have chosen the boundaRymatrices to have the same form as those in section 3, where
the boundary matrices depend on the spin parameter. IRthgatrix is dependent on the

spin of the electron only at one end of the chain, for example, we denoR (dy, 6;) the
boundary matrix at the right end of the chain independent on theogpiiihe Bethe ansatz
equations for/ =2,V = —% take the form:

exp[—itpa(kj)]%cot +iC, +I=1ﬂ[% 3’ Aﬁ+ tﬁ+/\ﬂ+i§
(J—1,2,...,N) (40)
i\2 2 N 1 k i 1 k ;
(ha + 5)°+ C2 l—lka—icoti’JrlA +-cot_'+fi
(ho — 5)2+ C2 |3 ko — 3COtY — 3 Ay + 3 COLY —

M

Ay — g ity +Ag+i
I ptlda gt @=12 ... M. (41)
B

a))»a—)»/g—i)\a-i-)»'g—i

Similarly, when the boundary matrix at the left end of the spin is independent of the spin
of the electron, denoted bR, (k;, 6;), we have that

expl2ik; (G + 1) — ipy (k)] 3 cot +iC, +i M Lcotd —as+ 5 Lot +as + 5
Ry (kj, 67) L cotY |Cb—|_1:[1% cotd —ap—Licothh 4, -1
(j=12....N) (42)
(e +i2)2—|—C2 N ohe —2coth +13, +lcotﬁ+‘§
(e )2+C3H fcotd — I, + 3cotd — 1§

B ﬁ Ao —hp +ityg 4 rp i

)\a—)»,g—i)»a-i-)»lg—i

(@=12,...,M) (43)
B=1(B#a)



Integrabilities of thes—J model with impurities 5249

where the number of down spins should be less tNa# 2 and N is the number of the
conduction electrons in the system. Furthermore, we obtain that

expl-iga (k)] 3tany —iC, —i _ 4 dtan — iy — 5 jtany + s — 3

Ry(=k;, 6)) %tan5’+|Ca+| gt stan¥ — g+ 4 Jtan¥ a4+ 1
(j=12...,N) (44)

(Aa+12)2+C31ﬂ[Aa—%tan"—2’+i—A +Ltank 4§

(ha — 52+ C2 {1 A — Stank Ao + 3tank — §

M
Ao — g +ihg +Ag+i
= ] prida b st @=12....M) (45)
8 a—)xﬂ—l)\a+)nﬂ—|
and
exp[2ik; (G + 1) — igy (k)] 3tan% —iC, —i IM[ Itan¥ — i — S ltan¥ 42— 1
Ra(k;, 67) tank vic, +i popltan —ap 45 Ttank p a4 )
(j=12...,N) (46)

(xa+}2)2+c§ N xa—%tan%+fzxa+%tan"—2'+
(he — 5)2+ CZ 11 ho — 3tan% — S 2, + Jtan¥ —
L W I Sy

- =12...M 47
[1 gt rs—i ) (1)

p=1(B+a)
for the case ot/ = -2, V = 1.
expl—ig, (k)] Stan¥ +iC, +i L Litan¥ —Lltank +iltan + Ltank +i
Rb(_kjva-j) %tan% — |C — | 1=1(1)) étan ltan— —| —tan ki + ltan— —|
M 1 i1
—tan T tan g+ &
= / Zf P2 (Gj=12...,N) (48)
ﬂlztan o tanf+k
(Ao +2)2 Czlﬁ[A tan"‘+ Ao + 3tany +2
(he +C2 1tan———k +1tan——i—
M
Ao — A i Ay + A I
= 1 p ¥ oy ¥ @=12.... M) (49)
o2y b = 2p — g A —
and
exp[2ik; (G + 1) — gy (k)] 2tan’s +iC, + i
Ry (kj, 67) %tan;—lcb—l
lﬂ[ ltan¥ — ltank +iltan¥ + ltank +i
X
,:1(¢)2tan———tan——i—tan + Jtan% —i
M 1 kj i1
stans —Ag+ 5 tan’+k +1
=12 21 2 (Gj=12...,N) (50)
p=1 §tan7’ —)\.ﬁ - 35 tan= ki +)"/3
(ho + 52+ C2 N ay — 2tan + S 2, +ltan’ﬂ+'z

(he — 524+ CZ 11 Ao — 2tant — S 2, + Ltank — 1
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M . .
ha =g+ hg + g +i

= I prl et =12 M) (51)
ﬂ:l(ﬂ;éa))\a_)\'ﬂ_l)\'a—i_kﬂ_l

for the case off =2,V = g when boundary matrix only at one end of the chain rely on

the spin parameter of the electron. Finally, for the casé ef —2 andV = —%, the Bethe
ansatz equations take the form:

expl—iga (k;)] %cot'ﬁ —iC,—i & lcotd —Lcotd —ilcoth + Lcoth i

Ry(=kj. &) Lcothh +ic, +i - 102 2cotk— — Lcoth +ilcoth + 2cot"’ +i

1_[zcot —Ag — cot L+ g (=12 N) (52)
= J= 9 b=y me ey
3.1 & cotd )»/34‘ ooty + i +2
(o + 32+ Czlﬁ[A —-cotﬁ+-x +-cotﬁ+§
(ha — 52+ C2 {1 ho — 3Ot — S 2 + 2cotl — &
M
Ao —Ag+ihg+Ap+i
= ] A +Aﬂ+. @=1,2...,M) (53)
p=iprey o T T N Aa T Ap
and
exp[2k; (G + 1) — iy (k;)] & cot —ic, —i
R, (k;, 57) lcot'ﬁ—HCb—H
N
—COt———COt——I—COt + 5 COt——I
< [] 2 2

k k H
1=10%)) 3 cot7 —2cot +i3 cot—’ + Zcotd +i

M 1 k; i
sCcot+ — A E CO'[ L+ A 5
S | A Ak Ak 3 P2 (j=12...,N) (54)
ﬂ:]_%COtE’—)Lﬁ—FLZ-COt + s+ 5%
(ko + )2+ C2 N hy — Lcoth + 52, + Lcoth + 1
(ha — 52+ CZ {1 ho — 3Ot — S 2 + S cotld — &

M
Ao —rg iy +Ap+i
= J] ===  @=12...Mm. (55)
ﬂzl(ﬂ?&a))\a—)»/g—l)ua—‘r)\.ﬂ—l

R.(k;, 6;) and R,(—k;, 6;) denote that the boundary matrices at the left and the right ends
of the system are independent on the spirrespectively. Note that the number of down
spins is less thaV + 2 for the system withV conduction electrons. In the following
section, we focus the discussions on the system with the boundary matrices depending on
the spins of the electrons at both ends of the chain. Set

(4c2 3)cosk — 4C2 + 5+ 4iC, sink

(4C2 3)cosk — 4C2 + 5 — 4iC, sink

(4c,, 3) cosk — 4CZ + 5+ 4iC, sink
i (4cb — 3)cosk — 4C2 + 5 — 4iC, sink
From relation (11) and

0, (k) =
(56)
Oy (k) =

_ Jy(cotd + 2iCy) expik;) + i[4 + (4V, — J,) explik;
explis ()] = b ( k-2 . iCp) Xp(f ) f[ 4V, — Jp) expli j')] (57)
Jy(cots — 2iCp) exp(—ik;) — i[4 + (4V, — Jp) exp(—ik;)]
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we obtain the following expressions. Whén= 2 andV = —%, we have that
exp(ik) for J, = 8
‘T @20, -12C,+3)’
Vo 3—4c?
) ‘T @ec,-1nERCc, +3
expliga ()] = (= DECTS (58)

explik +i6,(0] - for Ju = — e me 3

Vo 3-4c?
‘T @C,+12Cc, -3

WhenJ = —2 andV = %, we have that

- 8
— exp(ik) for J, = (2C, — 1)(2C, + 3)’
. 4c? -3
| ‘T @2C, -1DRC,+3
explip, (k)] = ( i;( - ©9

—explk —i6,(r —b] - for Ju = Ge— ey

Vo 4C2 -3
‘T eC,+1RC, -3

WhenJ =2 andV = 3, we have that

o -8
— explik + 6, (r — k)] for Ju = (2C, — 1(2C, +3)’
. ac? -7
| “T2C, —1)(2
explip, (k)] = - _)é o 0

— exp(ik) for J, = 2C. T DeC. —3)'

4c? -7
V, = .
(2C, +1)(2C, — 3)

WhenJ = —2 andV = —3, we have that

o 8
explik + i6,(—k)] for Jo = (2C, — D(2C, +3)’
o 7—4C?
; ‘o 2 a — 1 2 a 3
expliga (k)] = - 23( o o

exp(ik) for J, = 2C. T D@C. _ 3"

Vo 7 —4C?

T RCHDRC -3
The expressions of expli (k)] can be obtained by substituting the indexf » in the above
relations. Then, without any loss of generalization, we can choose that

;o 8 v o— 3—4c?

“T©2c,-12C, +73) ‘T @2C, —1)(2C, +3) 62)
8 3—4c?

Jp = Vp

T (2C, —1)(2C, + 3) = (2C, — D(2C, +3)
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for J =2 andV = —%. The Bethe ansatz equations take the forms as

Ap+ 5+ g+
4j+i(CatD) 4j+i(Cr+D) exp(2ik;G) = 1—[ qj — /B 2 4q; B 2 (63)
qdj—i(C,+1) 9j—i(Cy+1) 197 — s 2 q; +Ag —

(ha + 524+ C2 (Ao + 52+ C2 X ke — g1 + 5 2g +q1+2
()»0,—5)2+C3()»a—§)2+cbl=1 _q_')‘ +€11—-
L e =g tidg+ApFi

. | _ 69
)\a—)ulg—l)ua—i-)\.ﬁ—l

B=1(B#a)
whereq; = %cotk—zf. For the case off = —2 andV = % the Bethe ansatz equations have
zlso the forms (63) and (64) wilyy = —% tan% and the Kondo coupling constants should

e
J— 8 Vo 4c? -3
‘T @C, -DERC, +3) ‘T @C, -1ERC, +3) (65)
8 4C2 -3
-,b = b =

(2C, — D(2C, +3) (2Cy = D(2C, +3)

If 7 =2andV = 3, we choose that

8 4c2 — 7
Ja = - Va =
2c,+12c, — 93 2c,+1Hec, -3 (66)
S 8 o AT
"7 T 20, + 1)(2C, - 3) "7 (2C, + 1)(2C, — 3)
and the Bethe ansatz equations are
exp(2iij)qj+i(C“+l’ gricy T G-t l g +a + '
4j—i(CatD) Gj—i(CotD) 1z 4 — @ —1G) T — 1
Mg — g+ 5qi+ st
_ q B 2 qj B 2 (67)

p=19 — *p —5q; T Ap—

and relation (64) withy; = %tanff'. They are also the Bethe ansatz equations/fer —2
andV = —32 with ¢; = —1 cot and

;o 8 v 7—4C?
T ©ec,+1EeCc, —3) T ©@c,+1Eec, -3 (68)
8 7—4C?

Jp = Vi =

2C, + 1)(2C, — 3) (2Cy, + 1)(2C, — 3)°

5. Ground state

In this paper we restrict the discussions of the properties of ground state to the case of
=2 andV = q:%. The cases off = 2 andV = :32’ were studied in [15]. The
eigenvalue of the Hamiltonian is

1

N
E= q:ZN:tZ 2+; (69)
a4
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for J =2,V = —1with g, = Lcot ands = -2, v = L with ¢; = —3tan,
respectively. They satisfy the Bethe ansatz equations (63) and (64) from which the integral
equations are derived.

5.1. Integral equations

Following [29], we introduce the notation

e(x) = X+ I .
x—i
Then, from relations (63) and (64) we obtain
M
4qj qj 26 _ . .
¢ (1+ Ca> ‘ <1+ Cb) e@a)™ = /!:[16 (24) = 2p) € (29 + 2p) (70)
e e e e e(Lhy — 2gp)e( iy q1
3 —Ca 1+c, 1_¢, 1+c)1a
M
= ] eGa—2rp)eta+np) (71)
B=1(B#a)

where j = 1,2,...,N; a = 1,2,...,M and e(+o0) = 1. Considering that the
parameterg; can take complex values, the general structure {igf;—12 ..
consist of M’ pairs of gf = i, + 5 + O(exp(—=8G), = 1,..., M’ and M" pairs of
GE = —ho 5 +0(eX—38G), Xy € {1} and remainingV — 2(M’+ M") non-pairingg;’s.
To be more precise, we use

0={qjlj=12....,N}=X'"UX"UY
where

i
X' = {q;f = & 5 + OEXP(—0G) o = 1,...,M/}

X — {qgf = ot '5 +OEXp(—8G) Ay € Mgl =1, ..., M”} (72)
Y = Q\(X/ U X”),

Obviously, the non-pairing; satisfies equation (70) with=1,2,..., N —2(M' + M").
Wheng; € X’, from equation (70), we have

A Aa Ao Ao 2G
el 3 el el 3 el 3 e(Ay)
iva) \3+a) \i+a) \i+G

= e(2q; — 21a)e(24, — 2ha)e(2ha)
M
x ]_[ e(Ao — Ap)e(hg + Ap) a=12 ..M. (73)
B=1,(#a)
From equation (71) we have

A I I R PP
e e e e e
i-¢) \3+¢.) \3i-6) \3+6G )

N-2M_ M-M_

x [] e@u—2a)e@hg+2q) [] elhp—ra)e(=rs —1a)
=1 p=1
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= e(zq; - ZM)E(ZQ(; — 2ha)

(74)
whereM_ =M’ + M" and i,g B=12,...,M— M_) are the parameters describing the

down spins but having no contributions to the bound states. With the help of the above
relation, equation (73) becomes

)‘-a )\a )\a )"Dt 2G
e 3 )e T]e 7]e 1 e(Ay)
Co+3 Ci—3 Cp+3 C

N—-2M_

2

o
=e@2.)? [] e@u—2q)e@0+20) ] ea—rple(ha+ip)
=1 B=1(B#a)
.
X

e(hy — hp)e(hg + Ag) a=1,.
=1

M. (75)

Similarly, wheng; € X”, we obtain the following equation

A A Ao A 3 \2G
€ 3 € 1 ¢ 3 e 1 e()\a)
Co+3 Co—3 Cp+ 3 Cy

2
N—2M_

W
=e(2)® [] e@a—2a)e(@ha +20) [ | eCha — Ap)eCha + Ap)
=1 B=1

i

< [] eGa—ipeGa+ip) a=1,....M" (76)
B=1(B#ax)

The two equations (75) and (76) can be combined into a single equation

Ao Aa Ao Ao 26
e K T]e 7€ 1 e(Ay)
Ca + 2 Ca -3 Ch + 2 C/?

2
N—2M_

=e ) [] e@a—2a)e@ra + 2q)
=1

M_

<[] eGa—2rpeGa+1p) a=12 .. M
B=1(p#w)

(77)
with the new),, defined by

N Ao whene =1,2,..., M’
R whene =M +1, M +2,...,M_.
The parameters, (¢ =1,2,..., M — M_), in view of (74), satisfy
i i N—-2M_
e * e * e 25\0[ — e 2):0, + 2
(ca+%> (CH%) [] e 2q1)e( a1)

=1

A A MM-—
:e(c i;)e<cbil> ]—[ e(hg — Ap)e(hg + Ap)
a 2

. (78)
2/ p=1(p#w)
The non-pairingg; (i.e. ¢; € Y) satisfies

M-
4qj qj 126 _ o |
e (Ca + 1) e (Cb n 1) e(2q))"” = Qe(qu 2hp)e(2q; + 2hp)
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M—-M_
X e(2q; — 2hp)e(2q; + 2hp) (79)
B=1

wherej =1,2,..., N —2M_ ande(£o0) = 1. Setting
0(x) = 2tantx —m <6<

we have
e(x) = expli(r — 0(x))].

The logarithms of equations (77)—(79) give, respectively,

)\‘Dt )\'a )"Ol )\‘01
0 ) +o ) +o ) +o - +2600.)
Cat3 Ca—3 Cr+ 3 Cr—3

N-2M_

=4m)y +02u) + Y [0(2ha — 201) + 0(20q + 291)]
=1

M_
+ [9()‘-& - )‘ﬂ) + 9()‘-01 + )"5)] (80)
p=1
with o =1, 2,..., M_ and integers or half-integef,;

3\ i N-2M_
ol |+o0|=—"A)+ D [0@—2q)+02h+2q)]
Ca Cp + 2 =1

. Ao A
e ) oo ()

M—-M_ R . . R
+ [9()‘& - )‘,3) + 9()‘0( + )‘ﬁ)] (81)
p=1

1

witha =1,2,..., M — M_ and integers or half-integek,;

. . M_
9( Kl >+9( el )+2G9(2qj)=4n1,»+2[9(2qj—2A5)+9(2qj+zxﬁ)]

C,+1 C,+1 =
M-M_
+ [0(29; — 21p) + 60(2q; + 2)p)] (82)
p=1
with j =1,2,..., N —2M_and integers or half-integdi. By setting
de[k +o0]=2 + ! (83)
& x4+c0)] =2ralx C’E

equations (80)—(82) can be changed into the forms
a(hg, Ca+ D +ahe, Co — 3) +a(ha, Co + 3) + a(ha, Cp — 3) + 2Ga(hy, 1)

2dJ N-2M_

=5 TaGe )+ Y [aGa—a P +ala+a )]
o =1

M_
+ > [aGa — 2. 1) + a(hg + 2. D] (84)
=1
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witha=1,2,..., M_;

N—-2M_
a(}\‘aa Ca + %) +a(3\u¢9 Cb + Z_2L) + Z [a(ia — 41, %) +a(5\a +611, %)]
=1

2dJ, . . .

=—" —a0u, D +a(e.Co — D +alhe. Cp— 3)
M—-M_

+ [a(ha —2g, 1) +a(re + A, D] (85)
B=1

withae=12....M —M_;

2d;, &L
a(g;. Ca+ 1) +alg;, Cp + 1) + 2Ga(g;. 3) = EJ + 3 alg; — Ap. 3) +alg; + 2p. 3]
J =1
M—-M_
+ ) lalgy —hp 3) +a(g; +2p, 3)] (86)
=1

with j =1,2,..., N — 2M_. We define that

'(/\)=9(k)+i9 * +6 * +6 * +6 * —6(2)0)
7= 2G | \C.+3 Ca—3 Cy+3 Cr— 3

N-2M_

M_
_E{ > [9(2A—2qz)+9(2k+2q1)]+Z[9(A_Aﬂ)+9(k+xﬂ)]}
=1 yct

f(i)—l 0 A 0 A +0 A 0 A +6(2))
=26 Cat3 Ca—3 Co+3 Cp— 3

N-2M_ . .
+E{ > 1602 —29) + 62 + 29)]
=1

(87)

M—-M_ R . R .
— [0A — Ap) +9(A+A,s)]} (88)
B=1

_ 1 q q
@) =0Cq) + 5= {9 (Ca +1) +6 (cb n 1)}

1 (M
_E{ Z[@(Zq — 2g) +0(2q9 + 21p)]
B=1

M—-M_
+Y ) [0 -2 + 002 +z>tﬂ>]}. (89)
p=1

Then, the holes of, i andg are defined as the solutions of
Gj(A) = 27 x (omitted J)

Gj(h) = 27 x (omitted J) (90)
Gh(q) = 2m x (omitted ).
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By taking the thermodynamic limits, we introduce the distribution functions

A= o) a"(n)
q — o(q) hojes " (@)
rA— 60 6" ().

So we have that

% =2n(c(A) +a" (1)

dh

% = 27(p(g) + 0" (@) (91)
dj(h)

o =21(6(4) +6"(M).
Therefore, the integral equations can be written as
2a(x, 1) + é[a(x,cu +3H+al.Co—H+al, Co+ 3 +al, C,— 3]
= éa(k, H+200) +20" (0 + / dV o (W) ah — A, 1) +a(r + ), 1]
+ [ p@lat-a.H+a6+q. ) (92)
2a(q. 3) + é[a(q, Ca+1) +alg. Co+ D] =2p(g) + 20" (9)
+/dko(k)[a(q —a D +alg+r D]
+ [ dislatg -1 H +atg+1. 5] (93)
%[a(i, D+a0.Ca+3) +a0.Cp+3) —aG.Co—3) —al, Cp — )]
+/dq p(@lah —q, 3 +al+q, ]
=26() +26" () + / di' 6 G)[a(h — 3, 1) +a(h+ 1/, 1)] (94)

wherea(k, n) = n/[7(A* + n?)] with the arbitrary parametey. The terms with factors of
1/G in the above three equations describe the finite-size corrections of the system.

5.2. Properties of ground state

For the system withV electrons, by using the distributed functiomgr), (1) and p(g),
the particle number and magnetization per unit length are given by

g=/dqp(q)+2fdm(k)

s. 1 o
E—E/dCIP(CI) /d)bﬁ()»)-

The energies per unit length have the forms as

E 2

rel —EN + 27 / dg p(g)a(q, %) + 27 / dro(M)a(r, 1) (96)

(95)
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for the case ot/ =2,V = —% and
E 2N
o= 2o [wr@aa -2 [ Goman.y ©7)

forthe case off = -2,V = % Relations (92)—(94) become
2a(r, 1) =20 (A) + 20" (1) + / dV o W)ah — A, D) +a(r+ 1/, 1)]

+/dqp(q)[a(/\—q,%)+a(k+q, 2 (98)
200, =200 + 2@ + [ GoOlatg i+ atg +1. )]

+ [diolatg =3 +atq+7. ) (99)
/dq p@lat.—q,3) +al +4q, 3]

=260+ 26" + / dA' 6 () [aG =3, 1) +a(h+ 1/, 1)] (100)

if we setG — +oo. By Fourier transformation of equation (98) we obtain that

/dq p(q)+2/dko(k)+/dxoh(k) =1
which gives thatv/G = 1— [ dro"(1). Owing tos" (%) > 0, we have thalV < G, which
coincides with the single occupancy of every site. We assume that there is one particle per

lattice site, that isN/G = 1. Then we haves” (1) = 0. Now we consider the case of
non-magnetico(q) = 0. Relation (98) turns into

all, )=o) + f d o (Mya(n — A/, ). (101)

By Fourier transformation of equation (100) we have #het) = 6" (1) = 0, which means
that S,/G = 0 and the system is non-magnetic. From the above relation, we have that

|

1 [t .. e %
A) = — L VY 102
o) 2T /_oo € 2 coshz @ (102)

The interesting thing is that the above expression is identical to the integrable narrow-band
model with periodic boundary obtained by Schlottmann [22]. In this way, relation (99)
reduces to

a(g. 1) = o) + / o (alg — 1 3)

and it gives that

1 [t giieg L sech|ng] forg #£0
=5 | do = { : (103)

2 coshg : for g = 0.

The numbe of the down spins is equal ©6/2. The ground-state energy#s/G = —2In2
fors =2,V = —%, which has the same value as the one in the periodic boundary condition
[22]. This is why the impurities located at both ends cause only the finite-size correction of
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the ground-state energy. Forthe casdef —2,V = % corresponding to the ferromagnetic
state, we have that

(@) 1 ?

qu__z 1
TaTty (104)
1 1

5 (0 = 5(A) =0

=" W

by taking into account (A) = " (1) = 0. Then we haveE/G = 0.

6. Finite-size correction of the ground state

We assume that the distribution functioagi), p(g) and & (i) are even functions about
parameters., g and A, respectively. Then we have the following equations:

a(h, 1) + %{a(x, CatdH+alr,Co—H+al,Co+3)+al, Cy,— )]
= %a(k, Dt+od) +o")+ / dV o (W)ya(n — A, 1)
+ [ dp@ati—a. b (105)
a(q.3) + %[a(q, Co+1) +alg. Cp+ 1]
=p(@) + p"(@) + / dio(alg — 1. 3) + / dié(alg — 4, 3) (106)
%[a(?\, D4+al,Co+H+al,Co+3) —aG, Co— 1) —alh, C, — D)
+ / dg p(g)ah.—q, 3)
=60 +6"0) + / di 6 (Wya(h — A, 1) (107)
from equations (92)—(94), whetgx, ) = n/[7 (1% 4+ n?)] with the arbitrary real parameter

n. The terms with factors /G in the above three equations describe the finite-size
corrections of the system. The energies of the system can be described by

E 2
G- JFEN + ZN[/dq p(qalq, 3) + / dio(Ma(x, 1)] (108)
for J = +2, V = %1, respectively. Setting
1 n>0
S, =sign(n) = 1 -1 n<0 (109)
0 n=20

we have that
a(w, n) = S, exp(—|wnl). (110)

By Fourier transforming equation (105), we have

1
~h
" (0) = ZG[SC"+% + Sca_% + SCH—% + SCb—% —1]
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for N/G = 1. By letting

b(A) =a(h, Co+ D +ar, Co— 3 +al,Co+3) +alr,Cp,— 3) —a(r, 3) (111)
we have that
( )

qu p(@a(q, §>+fdxo(x)a<x, D =a@0 1+ 5= —0 0 —0"0.
We seta” (1) = 0. The Kondo coupling constant§, and C, should be in the ranges ()
Ca>3Co=—3() Ca=33>C,>-%(iii) 3>C.>-3C, =3 (v) C, = -3,
Cp, > % For the case off =2,V = —%, the ground-state energy can be written as the
form

E T

— = —b(0) — 275(0 112

o= b0 —2100) (112)
ando (0) should take its largest value. Then we péf) = 0 and obtain that

O b
210(0) =2In2+ — LC) dw (113)

2G J_o 14 exp(—|w|)
where
b(w) = Sc,+3 expl=lo(Ca + D+ Sc, -1 expl=lo(Ca — I
+Sc,+3 expl-lw(Ca + D+ Sc,-1 expl=lo(Cy — I —exp(—141).

Therefore, the finite-size correction of the ground-state energy due to impurities is

8(2c2+3C,+2) 3 . 2c, — 1
"= 4 —=—=In24+—=-2 114
2C.+3@cz-1 2 "3 ﬂ( 2 ) (114)
whenC, > 3 and C, = —3, where g is defined by(x) = [y (5! — ()] and

Y(x) = % InT"(x). By taking account ofC, > % thenJ, < 0, we haves (1) = O for the
ground state. From relations (105)—(107), we obtain that

M0 = %[a(i, H+al,Co+ D +at, - —ak,C, — ) —al, —2)] (115)
1 1 [1 10
p"(0) = —+ﬁ[——§+|n2+§—2ﬁ(0)} (116)

+2° b(w) cogwq)

1
h 1 _ — - —
= s seCh|nq|+ ,Co+1 » 2
r(q) =3 I ql [a(q ) —a(g, 3)] 47,G/0 cosh3

2G
(117)

for g # 0. WhenC, = 1, -2 < ¢, < 3, from relation (113), we have that

26 (0) _2|n2+2i{2(1 In2)—n+2|:,3 (26”+3> —ﬂ<1_2Cb)“. (118)

2 2

Then, the finite-size correction of the ground state has the form
b
= lcotGm + 37Cy) + tanGr + 37Cy) + 1]

1 44C2 — 26C, — 35+ 40C3
+ing— 124G, = 206, = 35+40C, (119)
5(2C, +3)(2C, —D2C, + D
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By taking account of/, > 0, we haves” (1) = 0. From relations (105)—(107), we obtain
that

N 1 [ codwl) w w 1
W =276 0 do cosh? {1+ exp(— ‘ED +Sa+g exp“i‘ B ‘w (Cb * §>H}
(120)
h 1 1 3
p"'(q) = 3sech|rq| + E[a(q, 5) +a(q, Cp +1)]

1 T coqwq)
- dw
A7 G Jo cosh%

{exp(—[20]) + exp(—|w|) + exp[-|w(C; + 3)I]

+S¢,+1 €xpl-lo(Cy + DI} (121)
for g # 0 and
% for C, = -1
1 + 1 + B(Cp+ 2)
p"O=12"2zG|C,+1 b (122)
2C 1 +1
+Sc, 1B (%) } for C, # —1.
The cases of > C, > -3, C, = 1; C, = -3, C, > 1 have the similar expressions.

WhenJ = -2,V = % by similar discussions, the finite-size correction of the ground-state
energy can be written as

, 5 42C, + 1)

_5_ 123
2 (2Cc,—-1H2Cc,+3 ( )
for C, > 3, C, = —3 and
4(2 1
£ 3 (2C, + 1) (124)

2 (2C, — 1)(2Cy +3)

forC,=331>0C> -3
Therefore, an integrable model in one dimension is constructed from-thenodel

where two magnetic impurities are coupled to the system. It describes the behaviour of the

strong correlation electrons with Kondo problem. The spectra of the system are not linear.

The boundaryR-matrix depends on the spin and rapidity of the particle and satisfies the

reflecting factorizable condition. The Hamiltonian of the model is diagonalized exactly by

the Bethe ansatz method. The integral equations are derived with the complex ‘rapidities’

g which describe the bound states in the system. The properties of the ground state are

discussed and the finite-size corrections of the ground-state energies are obtained due to the

couplings of the magnetic impurities.
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